
OK, I lied. In the previous
Delphi Internals column I

discussed DLLs in some detail. I
faithfully promised that this
month I’d write about creating
Delphi DLLs which could be used
by applications written in other
languages. Well, I got so carried
away writing about the stuff for
the column for this issue that I
completely forgot what I did
previously. Sorry about that. I’ll
take up the DLL story again next
time round. I’ll put it down to
premature senility. Can’t you just
hear those arteries hardening?

Delphi On Delphi:
A Walk On The Inside
As most Delphi developers are
aware, the Delphi system was
actually developed using... Delphi!
If anyone ever suggests to you that
a Delphi program is likely to slow
down to a crawl when you’ve got
more than a dozen forms in your
application, then just show them
Delphi itself! Delphi actually con-
tains seventy or eighty different
forms and runs just as speedily as
any other Windows program.

Seeing, as they say, is believing,
and I thought it would be interest-
ing to have a peek inside a Delphi
application to see how the applica-
tion’s forms actually get stored. If
you’re a seasoned Windows
developer, you might expect each
form to be held as a DLG resource

Delphi Internals:
Undocumented Secrets, Part 1
by Dave Jewell

➤ Figure 1
Resource
Workshop
showing all
the form
resources
inside Delphi,
identifiable
from the
resource
names.

➤ Figure 2
Here’s the
Component
Expert form
loaded up in
a Code Editor
window. Of
course, you
don’t get the
source code
as well, but
what do you
want out of
life...?

➤ Figure 3
Is this a Component Expert
window I see before me?
With a little additional
massaging, you can see the
Component Expert form in
all its glory. Obviously the
same principles can be
applied to any form in any
compiled Delphi executable.

30 The Delphi Magazine Issue 2

inside the application. However,
you need to bear in mind that not
all forms are dialogs – a Delphi form
can be either a dialog or a regular
application window. DLG resources
are therefore out.

Delphi actually stores each form
as an RCDATA resource, where the
name of the resource corresponds
directly to the Delphi form type.
For example, a form of type
TComponentExpert would be stored
as an RCDATA resource with the
name TCOMPONENTEXPERT. You can
see this in Figure 1. The
TComponentExpert form, of
course, corresponds to Delphi’s
Component Expert accessible from
the File menu.

Let’s say that we wanted to
extract the Component Expert
form from Delphi so as to take a
closer look at it. Using Borland’s
excellent Resource Workshop (Oh,
why didn’t Borland include the
Resource Workshop with Delphi?
[They’ve now made it available to
Delphi users in the new ‘RAD Pack’
add on. Editor]) or a similar
resource editor, we can copy the
appropriate resource, create a new
.RES file and paste the form into
this resource file.

What might really surprise you
here is that you’ve just created
yourself a form file! That’s right: a
Delphi form file (extension .DFM) is
actually nothing more or less than
a plain vanilla .RES file with a differ-
ent file extension. If you rename
your new resource file to
TCOMP.DFM (for example) and
then load it up under Delphi, you’ll
see the result shown in Figure 2.
Pretty neat, huh?

Note: If you don’t know how to do
this, just click Open File from the
File menu and then select DFM files
from the File Type combo box.
You’ll then be able to load any form
file into a new Code Editor window.

Using this technique, it should,
in principle, be possible to extract
any form resource from an applica-
tion, load it up as a text file, make
some alterations and then plug the
resource back into the executable
file. I can’t off-hand see much bene-
fit in doing this since (naturally)
you can’t get access to the code
associated with the form.

On a more serious note, the
above discussion should highlight
the fact that Delphi has an
extremely open architecture. I
don’t doubt that as soon as
someone has figured out the exact
internal format of a Delphi form
resource, (not a very difficult
proposition from what I’ve seen of
it – maybe I’ll cover this in a future
Delphi Internals column), we’ll see
one or more resource editors
specifically designed to work with
Delphi applications, allowing you
to re-arrange a form, change
captions and component proper-
ties even within the compiled and
linked executable file.

As pointed out earlier, there are
definite restrictions on how far you
can go down this route. For exam-
ple, changing the Sorted property
of a listbox from True to False
might break the application if the
code made assumptions about the
order in which items might appear
in the listbox.

Personally, I feel that there are
two legitimate reasons for wishing
to poke around with a compiled
application’s form resources.
Firstly, I’ve recently seen a utility
which can scan an executable
program’s dialog boxes looking for
user interface errors. By this I
mean such misdemeanours as
spelling mistakes in dialog box
items, missing or duplicated
Alt-key assignments, duplicated
control IDs and so forth. A utility
like this would be equally useful in
the Delphi marketplace but would
require carnal knowledge of the
form resource layout.

A second reason is far more
pragmatic and seems to have been
overlooked so far by both Borland
and the developer community. I
refer, of course, to the thorny issue
of program internationalisation.
With conventional C/C++ or Pascal
development, this is all very easy.
If you’ve been a good boy or girl
and stored all your program’s
string constants in string
resources, then you can easily
modify those resources with
Resource Workshop (or similar) to
create a foreign-language version
of your product. In the same way,
all dialogs (stored as DLG

resources) are eminently modifi-
able with a resource editor. This is
clearly very advantageous to
companies wishing to send a copy
of their software to a foreign
distributor for conversion for the
foreign marketplace. All conver-
sion can be done without losing
control of the product’s source
code. But what about Delphi
forms? Oh dear! Yes – I think you’ll
find that a Delphi form editor will
appear on the market quite soon...

Joining The Union
In the Moving Up column in this
issue I looked briefly at the ‘free
union’ capability built into the
Pascal programming language.
Let’s now look at this same facility
in rather more detail.

If you’re familiar with C and C++,
you’ll know that these languages
have both struct and union
keywords. The struct keyword
corresponds to Delphi Pascal’s
record facility, but there is no
direct equivalent to the C/C++
union.

This is rather a shame, since
unions are very useful things to
have. In essence, a union allows
you to overlay one or more differ-
ent variables at the same location
in memory. They allow you to treat
a data structure as if it were of
more than one different type. As an
example, the SDK documentation
tells you that Windows bitmap files
(.BMP files) can start with one of
two different file headers. By
reading the file header information
into a union type, you can make a
quick determination of which file
header type is involved and then
access it using the appropriate
part of the union.

It turns out that Pascal does have
this capability, but it’s very well
hidden. For example, try experi-
menting with the type declaration
shown in Listing 1 (next page).

Technically speaking, this type
of record is called a discriminated
union and has a tag variable (called
Sel) which discriminates between
the different parts of the union.
Here, Sel is a Boolean value which
means that we’re restricted to two
alternative data layouts within the
union. However, you could equally

July 1995 The Delphi Magazine 31

well use an Integer (as I’ve done
elsewhere in the Moving Up
column) which will obviously give
you a lot more!

Where might you use this sort of
data structure? Well, imagine that
you’re creating a drawing program
and you want to represent each
different object with the same
Shape data structure. In other
words, circles, rectangles, ellipses,
straight lines and so on are all
encapsulated by the Shape data
type. You might choose to
implement the Shape data type
something like the example in
Listing 2.

In this example, the Rect, Circle
and Line symbols are assumed to
be constants which you’ve defined
previously. Equally, you could use
an enumerated type for your tag
variable (the ShapeType field) and
just use the different values of the
enumerated type as selectors in
the union. Provided that the tag
variable is a scalar (eg not a floating

point!) then the compiler will be
happy. With the above data
structure, you might implement
the DrawShape procedure of our
hypothetical drawing program like
the example in Listing 3.

At this point, any OOP devotees
out there will no doubt be yelling
‘polymorphism’! Certainly, the
effect is very similar.

Discriminated unions aren’t the
only types of unions that Pascal
allows. We can also implement a
non-discriminated or ‘free’ union
by removing the tag variable
entirely. In this case, our initial
type definition would look some-
thing like that in Listing 4. Because
the tag field no longer exists, the
size of the structure is reduced:
it’s now equal to the size of
whichever variant part happens to
be the largest.

A more modern innovation (as
far as Borland’s particular flavour
of Pascal is concerned) is the
absolute keyword. Using absolute,

you can tell the compiler to locate
two variables at an identical
storage space, or even place a
variable at a specific segment and
offset (this latter facility is more
relevant to real-mode DOS
programming than Delphi). For
instance, here’s how we would
achieve a similar effect to the
above Union declaration using the
absolute clause:

var
 AsInteger: Integer;
 AsBytes: array [0..1] of
 Byte absolute AsInteger;

Sadly, there are restrictions on
where the absolute specifier is
located. It would be nice, for
example, if you could put it inside
a type definition like this:

Union = record
 AsInteger: Integer;
 AsBytes: array [0..1] of
 Byte absolute AsInteger;
end;

If you try this, you’ll get a syntax
error: it’s not allowed. You can
see, then, that the free union trick
is most relevant to type declara-
tions, whereas the absolute clause
is used for variable declarations.
The techniques are complemen-
tary.

Incidentally, if you find this sort
of thing interesting, then I’d recom-
mend you track down a copy of
Peter Grogono’s Programming in
Pascal. (Addison Wesley, 1979,
ISBN 0-201-02473-X). This book is
now out of print, but it’s well worth
trying to find a second-hand copy.
You obviously won’t find any
Borland extensions mentioned, but
it’s the best Pascal reference I’ve
ever seen.

Dave Jewell is a freelance consult-
ant and Windows developer. He is
the author of Instant Delphi
published by Wrox Press. You can
contact Dave on the internet as
djewell@cix.compulink.co.uk

type
 Union = record case Sel: Boolean of
 False : (AsInteger: Integer);
 True : (AsBytes: array [0..1] of Byte);
 end;

➤ Listing 1

type
 PShape = ^Shape;
 Shape = record case ShapeType: Integer of
 Rect : (UpperLeft, LowerRight: TPoint);
 Circle : (Centre: TPoint; Radius: Integer);
 Line : (StartPt, EndPt: TPoint);
 ...etc...

➤ Listing 2

Union = record case Boolean of
 False : (AsInteger: Integer);
 True : (AsBytes: array [0..1] of Byte);
end;

➤ Listing 4

procedure DrawShape(s: PShape);
begin
 case s^.ShapeType of
 Rect: { code to draw rectangles }
 Circle: { code to draw circles }
 Line: { code to draw lines }
 ... etc ...
 end;

➤ Listing 3

32 The Delphi Magazine Issue 2

	Delphi On Delphi: A walk On The Inside
	Joining the Union

